人民網(wǎng)健康·生活

AI輔助診斷早期卵巢癌準(zhǔn)確率達(dá)93%

2024年02月01日08:59 來源:科技日報

  科技日報北京1月31日電 (記者劉霞)美國佐治亞理工學(xué)院癌癥綜合研究中心(ICRC)科學(xué)家將機器學(xué)習(xí)與血液代謝物信息相結(jié)合開發(fā)出一種新方法,使卵巢癌樣本檢測準(zhǔn)確率達(dá)93%。相關(guān)研究論文發(fā)表于最新一期《婦科腫瘤學(xué)》雜志。

  卵巢癌被稱為沉默的殺手。因為這種疾病剛出現(xiàn)時通常沒有癥狀,在癌癥后期被發(fā)現(xiàn)時已經(jīng)很難治療。最新研究負(fù)責(zé)人、ICRC創(chuàng)始主任約翰·麥克唐納表示,雖然晚期卵巢癌患者平均5年生存率約為31%,但如果及早發(fā)現(xiàn)并治療,平均5年生存率將超過90%。

  盡管30多年前,科學(xué)家就開始研究卵巢癌早期檢測方法,但結(jié)果一直差強人意。麥克唐納解釋說,因為卵巢癌是從分子水平開始的,所以即使是同一種癌癥,也有多種產(chǎn)生途徑。目前他們還沒有找到卵巢癌的單一通用診斷生物標(biāo)志物。鑒于此,他們使用人工智能(AI)的分支機器學(xué)習(xí),來開發(fā)新型早期診斷方法。

  研究團隊指出,代謝水平上的變化可反映多個分子水平上共同作用的潛在變化,所以他們選擇患者個人的代謝圖譜作為整個檢測方法的基礎(chǔ)。質(zhì)譜法能通過檢測代謝物的質(zhì)量和電荷特征來識別血液中代謝物的存在,將其納入基于機器學(xué)習(xí)構(gòu)建的預(yù)測模型內(nèi),類似于使用單個面部特征構(gòu)建面部模式識別算法。已知有數(shù)千種代謝產(chǎn)物在人體血液中循環(huán),通過質(zhì)譜分析和機器學(xué)習(xí),可以很容易、很準(zhǔn)確地檢測它們。以此開展卵巢癌早期檢測,準(zhǔn)確率高達(dá)93%。

  麥克唐納表示,新方法使用患者個人的代謝圖譜,在檢測卵巢癌方面的準(zhǔn)確性高于現(xiàn)有常規(guī)檢測方法。這種個性化的方法代表了一個極富前景的卵巢癌早期檢測方向,有望應(yīng)用于其他癌癥檢測。

(責(zé)編:喬業(yè)瓊、李楠樺)




栾城县| 泗阳县| 石首市| 东源县| 吉隆县| 堆龙德庆县| 姜堰市| 监利县| 宜章县| 静宁县| 仁寿县| 钟山县| 新乡市| 达拉特旗| 越西县| 法库县| 桃江县| 巫山县| 涞源县| 松溪县| 万盛区| 犍为县| 民丰县| 云浮市| 徐州市| 永德县| 宁化县| 襄垣县| 唐河县| 茶陵县| 个旧市| 遂宁市| 团风县| 通海县| 泾川县| 平山县| 黔江区| 惠安县| 修武县| 会宁县|